Building An Evolution Transformation Library!

W. Lewis Johnson and Martin Feather

USC / Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

Abstract

We have been developing knowledge-based tools to
support the evolutionary development of specifications.
Evolution is accomplished by means of evolution
transformations, which are meaning-changing
transformations applied to formal specifications. A
sizable library of evolution transformations has been
developed for our specification language, Gist. This
paper assesses the results of our previous work on
evolution transformations. It then describes our current

efforts to build a versatile, wusable evolution
transformation library. We have identified important
dimensions along which to describe transformation

functionality, so that one can assess the coverage of a
library along each dimension. Potential applicability of
this formal evolution paradigm to other environments
will is assessed.

Keywords: specification, orocess modeling, evolution,
intelligent assistance, component libraries

1. Introduction

The Knowledge-Based Software Assistant, as proposed
in the 1983 report [13], was conceived as on intezrated
knowledge-based system to support all aspects of the
software life cycle. Such an assistant would support
specification-based software development: rather than
writing code in conventional programming languages,
programs would be written in an executable specification
language, from which efficient implementations would be

mechanically derived. A number of systems since been
developed, each providing assistance for individual
software activities: Sanders Associates’ Knowledge Based
Requirements Assistant [27], the Kestrel Institute’s
Performance Estimation Assistant [4], and ISI's
Knowledge-Based Specification Assistant [17, 16, 15]. ISI
and Sanders are now beginning development of a new
system, ARIES,2 which provides integrated assistance for

IThis work was sponsored in part by the Air force Systems
Command, Rome Air Development Center, under contracts
F30602-85-C-0221 and F'30602-89-C-0103. It was also sponsored in
part by the Defense Advanced Research Projects Agency under
contract no. NCC-2-520. Views and conclusions contained in this
report are the authors’ and should not be interpreted as representing
the official opinion or policy of the U.S. Government or any agency
thereof.

0270-5257/90/0000/0238/$01.00 © 1990 |IEEE

requirements analysis and specification development.

ISI’s work treats specification development as a formal
evolutionary process. Requirements and specifications
change rapidly during the requirements engineering
process; this change must be supported and managed. In
our approach a description of the system to be built
exists in a machine-processable form from the very early
stages of a software development project, and is
gradually refined and evolved to produce a formal
specification, together with supporting documentation.
In ARIES, this system description is a mixture of formal
representations and informal descriptions such as
hypertext. This paper focuses only on the evolution of
the formal component of system descriptions.

During the specification development process, a system
description undergoes well-defined semantic changes [12].
New details are added, details of the domain are removed
which are irrelevant to the system at hand, revisions are
made to resolve conflicts between definitions, and high-
level requirements on overall behavior are transformed
into requirements on the behavior of individual system
components. Evolution of requirements and
specifications continues as a system is maintained. To
support evolution, we have constructed a library of
transformations for modifying specifications. This library
consists primarily of so-called "evolution
transformations", i.e., transformations whose purpose is
to elaborate and change specifications in specific ways.
They thus differ from conventional "correctness-
preserving® transformations, which are applied to derive
efficient implementations from specifications.

The original 1983 IKBSA report anticipated that
specifications would evolve, but did not describe the
mechanism for such evolution. Partly as a result of the
work on the Specification Assistant, the current vision of
an ultimate Knowledge-Based Software Assistant
embraces the notion of a formalized specification
development process [7].

Our evolution transformations perform semantic
changes such as revising the type hierarchy defined in a
specification, changing data flow and control flow paths,
and introducing processes to satisfy requirements. A
single transformation may perform a number of

2ARIES stands for Acquisition of Requirements and Incremental
Evolution of Specifications.

238 Recommended by: Dave Barstow

individual changes to a specification; for example, if a
definition is changed, all references to that definition
throughout the specification may be changed in a
corresponding manner to retain semantic consistency.

Evolutionary development of specifications via
transformations has the following advantages. First,
because the transformations take care of low-level editing
details, changes are performed more reliably. Second, a
record of transformation steps provides traceability from
high-level requirements to low-level specifications. Third,
transformation steps can be undone and replayed. This
latter capability is important in situations where multiple
developers are independently making changes to a
common specification. Specification consistency is
maintained by taking each parallel sequence of evolution
steps, attempting to combine them into a single sequence,
and replaying the new sequence of steps, looking for
conflicts between changes [9].

Exploration of the space of evolution transformations in
the Specification Assistant project was example-driven.
We concentrated on two problems, a patient monitoring
system and an air traffic control system, and worked out
development scenarios by hand to discover what
transformations were necessary. We then implemented
general-purpose versions of those transformations, which
could be applied to achieve those developments
mechanically. The result of this exploration was a sizable
library containing around 100 transformations, of a wide
variety of types. This library is significantly more
extensive than similar libraries developed by Balzer
[3] and Fickas [11]. And while other researchers have
studied evolution steps similar to those captured by our
transformations [28, 21], they have not developed
transformations to enact these steps. We now are
expanding on this work in the ARIES system, developing
a transformation library that is extensive enough and
powerful enough to apply to a wide range of
specifications.

This paper summarizes our experiences so far with
evolution transformations. We will compare evolution
transformations and other representations of
programming knowledge such as cliches. - Tools for
applying and documenting transformations will be
described. We will then describe our current work in
building a proper library of transformations, and tools
which aid in the use of this library. A scheme for
categorizing transformations according to their effects
will be described. This categorization system is driving
the further development of the transformation library: it
provides a map of the space of possible transformations,
so we can determine where better coverage of this space
by the library is needed. It also serves as the basis for
automated tools which retrieve and apply
transformations to accomplish the developer’s desired
semantic changes.

2. Related Work

We now compare our overall approach with related

efforts toward supporting the process of specification

construction. The following have influenced our research:

Burstall and Goguen argued that complex specifications
should be put together from simple ones, and developed
their language CLEAR to provide a mathematical

foundation for this construction process [5]. They
recognized that the construction process itself has
structure, employs a number of repeatedly used

operations, and is worthy of explicit formalization and
support - a position that we agree with wholeheartedly.

Goldman observed that natural language descriptions of
complex tasks often incorporate an evolutionary vein -
the final description can be viewed as an elaboration of
some simpler description, itself the elaboration of a yet
simpler description, etc., back to some deseription
deemed sufficiently simple to be comprehended from a
non-evolutionary description [12]. He identified three
"dimensions” of changes between successive descriptions:
structural - concerning the amount of detail the
specification reveals about each individual state of the
process, temporal - concerning the amount of change
between successive states revealed by the specification,
and coverage - concerning the range of possible behaviors
permitted by a specification. We were motivated by
these observations about description to try to apply such
an evolutionary approach to the construction of
specifications.

Fickas suggested the application of an Al problem-
solving approach to specification construction [10]. He
identifies some domain-independent goals of specification
construction, and methods to achieve them.
Fundamental to his approach is the notion that the steps
of the construction process can be viewed as the primitive
operations of a more general problem-solving process, and
are hence ultimately mechanizable. Continuing work in
this direction is reported in [26] and [2]. They have
concentrated on domain-specific goals arising in the
course of specification development, whereas our efforts
have concentrated on more problem-independent goals.

In the Programmer’s Apprentice project (see [25] and,
more recently, {30]), the aim - to build a tool which will
act as an intelligent assistant to a skilled programmer -
focusses on a different part of the software development
activity to our work, yet much of what they have found
has relevance to our enterprise. In their approach,
programs are constructed by combining algorithmic
fragments stored in a library. These algorithmic
fragments are expressed using a sophisticated plan
representation, with the resulting benefit of being readily
combinable and identifiable. Use of the Programmer’s

Apprentice is thus centered around selection of the
appropriate fragment and its composition with the
growing program, with application of minor

transformations to tailor these introduced fragments. In
contrast, our approach is centered around selection of the
appropriate evolution transformations, with reusable
components playing a lesser role. Both efforts address
issues of retrieval and explainability, and we will make
specific comparisons later in the paper. Their more

239

recent project on supporting requirements acquisition (the
"Requirements Apprentice", [24]) addresses the early
stages of the software development process, and includes
similar techniques to those of the Programmer’s
Apprentice but operating on representations of
requirements.

3. Transformations in the Specification Assistant

In the Specification Assistant, evolution transformations
were represented declaratively in such a way as to
support interactive application, on-line documentation,
and replay. Figure 3-1 shows the on-line documentation
for the command Parameterize. This command is used
to add parameters to parameterizable constructs in Gist,
i.e.,, relations and events. The user supplies the
parameter to be added to the definition. The command
ensures that the type of the new parameter has been
declared, and inserts it into the parameter list of the
construct being parameterized. It then modifies every
reference to the parameterized construct to add a new
parameter there as well.

For each transformation, the Specification Assistant can
generate on-line documentation, as shown above, as well
as off-line documentation for inclusion in our reports and
manuals. The system is also able to provide interactive
help when transformations are applied. That is, when
the user is trying to apply a Parameterize command, the
system will guide the user through the application,
indicating which parameters should be applied next, what
their types are, and how they are to be input (e.g.,
"Please mark the the term to be parameterized (a
parameterizable declaration). Mark with meta-Mouse-
L."). The parameters are checked for validity, and then
the transformation is applied.

A record is kept of each transformation that is applied,
and on what arguments. The developer can undo a
sequence of transformations at any time, perform
additional changes, and then replay the transformations.
The Assistant automatically determines whether the
transformations are still applicable, and if not requests
the developer to supply new inputs for the

Plan: PARAMETERIZE
Inputs:

chosen by (Meta-LeftMouse)
NEW-ROLE: New parameter, a role;
chosen by (User typein)
Precondition:
The new parameter type must be declared,

Add a paramerter t0 a declaration, and attempt to generalize references t0 USe new parameter.

DECL. Term To be parameterized, a Parameterizeable construce;

and there cannot be outstanding static analysis errors.

Figure 3-1: Documentation for the Parameterize command

transformations which could not be reapplied. This
mechanism is used to simultaneously support evolution of
the specification at different levels of detail, where one
level is derived from the other by transformation. Two
levels of detail which are useful to distinguish are the
domain level and the system level. At the domain level,
we would describe an air traffic control system in terms
of its interactions with domain agents such as aircraft
and controllers. At the system level, we would describe it
in terms of actual inputs and outputs, such as radar
tracks, flight plan data, and console displays. It is useful
to be able to describe requirements in terms of domain
objects, and then subsequently transform these into
specifications of computations on system data.
Replayability ensures that one can revise the domain-
level description at will, and then rederive the system-
level description. The replay capability can also be used
to allow developers to elaborate different aspects of the
specification independently. The developer tries one
evolution sequence, undoes it, tries another, undoes it,
and then replays the two sequences in an interleaved
fashion.

3.1. The transformation representation

The following properties of transformations are made
explicit in the representation. First, each transformation
applies to a set of inputs, each of a particular type.
Possible types are categories of syntactic constructs, such

as expression or predicate, as well as disjunctions and
specializations of these categories. These types are
defined using ISI's AP5 database extension to Common
Lisp [6]. In APS5, any predicate calculus query can be
used as the definition of a new type, which can then be
used in the definition of a transformation.

Transformations typically have a set of preconditions.
Transformations typically have multiple preconditions.
We attempt to specify preconditions for each
transformation, sufficient to guarantee the applicability
of the transformation. An interactive help facility in the
Specification Assistant notifies the wuser which
precondition failed, and requests the user to reenter those
arguments which were used in the failed precondition.

Preconditions are rechecked during transformation
replay.
Finally, each transformation has a method. The

method is an imperative program written in either our
metaprogramming language Paddle [31], or Lisp. Once a
transformation’s preconditions are satisfied, the method
is executed, and the result is displayed.

Additional textual properties were included in order to
support the documentation and help facilities. Each
transformation is given a short phrase to use as the name
of the transformation, and a longer string explaining
what the transformation does. Likewise English phrases

240

are supplied for each input, type, precondition, and
precondition failure. These phrases are assembled to
provide the English text necessary for each interaction
with the user.

3.2. Transformation categories

We divided our set of transformations into the
following categories, to facilitate users’ selection of the
the appropriate transformation:

e Structure-adding commands, which add a new
construct into the specification, e.g.,, Add-
Type, which adds a new type declaration,

Replacement commands, which replace
construct with a new one, e.g., Rename-
Concept, which changes the name of a
definition,

a

which restructure

Reorganizing commands,
the specification without changing its
meaning, e.g., Bubble-Up, which moves a
definition up out of an enclosing module,

Behavior changing commands, which modify
the behavior described by existing
specification components, e.g., Singleton-To-
Any, which permits multiple instances of a
type where only a unique instance was
permitted before,

Data flow modifying commands, which change
the flow of data through the system, while
retaining the behavior of the system as a
whole, e.g., Spice-Communicator, which
interposes a communication device between
two agents,

Terminology elaboration commands, which
elaborate some part of the specification
terminology, often by adding or changing an
existing declaration,

Unfolding commands, which replace uses of a
construct with equivalent but lower-level
constructs, e.g., Unfold-Function, which
changes a function definition into
equivalent relation definition,

Implementation / approximate unfolding
commands, which replace uses of a construct
with a nearly equivalent construct which is
closer to implementation, e.g., Maintain-
Invariant-Reactively, ~which replaces an
invariant with a demon which reacts to
violations of the invariant, and

an

Abstracting commands, which make a
specification more abstract by discarding
detail, e.g., Collapse-Types, which combines
two types into a single more general type.

241

4. Analyzing Transformation Effects

The above categories only characterize the effects of
transformations in general terms. In our current work,
we have been attempting to formalize more precisely the
semantic changes that transformations achieve. We are
now incorporating these formal descriptions of effects
into the command definitions, to further aid in retrieval
and application. We are also extending the library to
ensure that the space of possible semantic changes which
we have identified is adequately covered.

There are two main types of transformations in our
library, those which change meaning and those which do
not. The "meaning-preserving" transformations differ
from those appearing in transformational implementation
systems in intended purpose: they

e reorder the specification for

better presentation,

components

into an
language

e rewrite specification components
equivalent form using different
constructs, or

e eliminate redundancies and make
some otherwise implied features
specification.
Some of these transformations may also appear in a
transformational implementation system, since such
systems must frequently replace high-level constructs
with low-level ones.

explicit
of the

To describe the meaning-changing transformations, a
language is needed for describing the semantic properties
being changed, and the nature of the change. In many
cases, it is natural to view the specification as a semantic
network, and the transformation as a modification of
that network. Network notations such as entity-relation
diagrams and data flow diagrams are commonly used in
describing systems. FEach such diagram focuses on one
dimension of the system. Evolution transformations have
the effect of modifying one or more of these network
diagrams. Parameterize, for example, changes the entity-
relationship model: it adds a new link between the
concept being parameterized and the type of the new
parameter. If the construct being parameterized is a
process definition, Parameterize also changes the data-
flow network: it adds an input to the process. We have
identified a number of such network abstractions, and
have developed tools for deriving each abstraction from
system specifications. The effects of transformations can
be characterized wusing a set of generic network
modification operators, which can be applied to any
dimension.

The syntactic constituents of the specification are used
to represent the nodes in the semantic networks. Every
declaration is a node, as is every parameter of the
declarations, every statement, procedure, and expression.
Furthermore, every object is linked to the syntactic
subconstituents that it contains, and to the constituent

that contains it. A parse tree is thus a natural
representation for such a network of nodes.

A range of abstract semantic diagrams can be derived
from the basic parse tree network. This involves
selecting the nodes that are included in the abstract
network, and defining links between them in terms of the
structural relationships of the parse tree. An entity-
relationship diagram, for example, only includes the type,
instance, relationship, and event nodes; it omits nodes
which are internal to the definition of each. Abstract
semantic relations can be defined in terms of co-
occurrences of syntactic relations. For example, an
invokes relation holds between a procedure call and a
procedure if the procedure appears syntactically within
the lexical environment of the procedure call, and has the
same name as the name appearing in the procedure call.
In Gist, the type hierarchy 1is defined using
specialization-of slots, as in the following example:
type pllot speclalization-of person. A
specialization-of relation can be defined to exist between
two types if the declaration of the supertype is in the
lexical environment of the declaration of the subtype, and
the subtype definition has a specialization-of slot
whose value is the name of supertype.

The following semantic relationships are effective for
describing changes in the transformations that we have
studied so far:

e the modular organization of the specification,
represented as a component relation between
modules and their components,

the entity-relationship model defined in the
specification, represented using the relations
speclalizatlon-of, and parameter-of,
type-of, and instance-of,

the data flow relationships, holding between

components that computed values and
components that supply values,

o control flow links, consisting of the
relationships control-substep and

control-successor,

fact flow links, consisting of the relationships
accesses-fact and modifies-fact
between processes and the declarations of
facts that they access and modify, and

state description links, associating statements
and events, on one hand, with preconditions
and postconditions that must hold in the
states before and after execution, respectively.

The distinction between data flow and fact flow arose
out of our attempts to reconcile conventional data flow
representations with the relational world model embodied
in Gist. In the data flow view, processes interact with

242

the environment only through fixed input and output
ports. In the relational modeling view, facts about the
environment are represented as a database of assertions
that processes can freely access and modify. We believe
that strict adherence to data flow through input and
outputs is inappropriate in high-level specifications,
because it confuses the concerns of what behavior is
desired and what data will flow between processes to
accomplish this behavior. For example, we may wish to
state in a specification for an air traffic control system
the assumption that "all aircraft of interest are flying
below 30,000 feet". Although this assumption refers to
the aircraft’s altitude, altitude data will be input to the
process only if the process explicitly checks the
assumption at run time. Fact flow refers to the
properties of domain objects which a process is sensitive
to, or which are changed by the process, regardless of
whether these properties are manifested as data flows. In
our specification development methodology, developers
are free to first define the relevant fact flows and then
use evolution transformations to turn these into data
flows.

The most primitive network manipulation operations
are insert and remove for adding and deleting links,
and create and destroy for creating and destroying
objects. In addition to these primitive operations, a
number of complex operations have been identified:

e Update - remove a link from one node and
add it to another node.

e Promote - a specialization of update. If one
of the linked nodes is part of an ordered
lattice, then wupdate the link so that it
connects a higher node in the lattice.

e Demote - the opposite of promote. Move the
link to a lower node in the lattice.

e Splice - remove a link from between two
nodes A and B, and reroute the connection
through a third node, C, so that A is linked
to C and C is linked to B.

Some examples of promote transformations are the
following:

e Bubble-Up move a definition from an
embedded module to an enclosing module -
this promotes over the component hierarchy;

e Generalize-Parameter - change the type of a
parameter to be more general - this promotes
over the speclalization-of hierarchy.

Note that for some of these transformations it may be
necessary to specify over which link the promotion or
demotion is supposed to occur.

Splice arises in a number of different transformations,
splicing a range of different links. For example, Splice

Communicator splices accesses-fact paths. It is
applied to some process definition that is accessing some
fact about objects in the external world. The
transformation introduces a new object, typically a
monitoring device, to serve as an intermediary. The new
object accesses the external object, and copies the
accessed information locally. The process can then access
the copied data instead of the external data. Splice
Communicator is thus a common step in transforming
abstract fact flows into concrete data flows. Other
transformations perform splicing operations, particularly
those which fold in new definitions. One such
transformation is Statement-To-Procedure, which takes a
statement which is part of some process definition, and
defines it as a separate procedure. The statement is then
executed by invoking the new procedure. Viewed from
the control-flow perspective, Statement-To-Procedure
splices a procedure invocation between the caller and the
new procedure body. This analysis reveals an interesting
relationship between splicing and folding. Folding a
definition has the effect of drawing a boundary around a
section of text, and turning it into a new definition. Any
links to the text must therefore be spliced in order to get
across the new boundary.

We have also identified some more complex object
creation and destruction operations:

e Joln - combine two nodes into a single node;
some links to the rest of the network may be
lost.

e Copy - Construct a new node as a copy of an
existing node; some links may not be copied
over.

5. Building a More Complete Library

The above analysis has given us the means for
determining what transformations to include in our
library, and the basis for assessing its completeness. It
helps to identify "building-block" transformations from
which more complex transformations may be constructed.
Building-block transformations perform some simple
operation along one or more dimensions, rather than
performing multiple operations along a single dimension,
or multiple unrelated operations. QOur previous example-
driven approach led to transformations that that were
overly complicated, even when described in our
dimensional fashion. These transformations need to be
decomposed into their component building blocks.

An example of such a transformation is Add-Disjoint-
Subtypes, first described by Balzer (3]. This
transformation defines two disjoint subtypes of a
specified type, and revises the signatures of all relations
over the type so that they instead are restricted to one
subtype or the other. The operations of adding the
subtypes and specializing the relations are distinct
operations, which could be performed independently of
each other. We therefore realized individual operations
in separate transformations, Add-Specialization and

Specialize-Parameter. Add-Disjoint-Subtypes now
invokes these other transformations as substeps. Users
are free to either use the larger command, or invoke the
substeps directly for some other purpose.

Coverage of the library can be assessed by making sure
that all possible combinations of network update
operations, link classes, and node classes are represented
in the library. This analysis has already resulted in
improved coverage. For example, once splice was
recognized to be a generic operation applicable to a
variety of links, it could be applied to other links such as
control flow. This led to the inclusion of the Statement-
To-Procedure transformation.

In our framework, specification objects belong to a
hierarchy of types, and relations belong to a hierarchy as
well. The effect descriptions of transformations may be
more specific or general, depending upon the generality
of the object types and relations involved. One way of
identifying opportunities for new transformations is to
see whether a transformation can be modified to apply to
a more general class of objects, or conversely whether a
more powerful transformation should be written which
applies to a narrower class of objects.

We are already well on our way to providing a firmer
foundation for our transformation library, using more
general transformation building blocks. However, the
resulting library may turn out to be inadequate for a
number of reasons. First, there may be some links
between nodes that we have failed to identify. As we
broaden our specification language to include more non-
functional requirements, new dimensions will likely
emerge. Second, there may be higher-level operations
which we have failed to identify, i.e., other operations
such as splice. If we discover a new generic operation,
then a whole new category of transformations will then
be suggested.

Previous work in the development of reusable
component libraries has generally been unable to provide
methods for assessing library completeness along the lines
identified here. For example, Prieto-Diaz and Freeman
[22] factor software component properties along a
number of different dimensions, but fail to establish a
taxonomic hierarchy along any dimension. There is thus
no way to determine whether one component is more

general in applicability than another. Systems which rely
upon a classification hierarchy of objects, such as Allen’s
system [1] and Lubars’ system [19] classify primarily on
the basis of input and object types. Without a notion of
generic operations, classification of effect is ad hoc at
best. By restricting our classification to a particular kind
of software component, namely evolution
transformations, we are able to do a much better job of
classifying our components.

6. Retrieving and Using Transformations
When using a library of operators such as our evolution
transformation library, a user must do the following;:

243

o find the right transformation,
¢ understand what it does, and

e determine how to apply it to achieve the
desired effect.

These activities are seldom trivial, particularly if the
population of the library is large and the effects of the
operators is potentially complex. We have consequently
been concerned with providing automated support for
these activities. Some new capabilities in these directions
have recently been developed, and further developments
are anticipated.

Instead of relying upon fixed menus, we provide a
flexible retrieval mechanism for identifying candidate
transformations to apply. Each transformation is
annotated to indicate what effect it is guaranteed to
have, and what effects is may possibly have under certain
circumstances. These annotations are lists of effect
descriptions, along the lines described above. Each effect
is a generic operation applied to a combination of the
transformation’s inputs, outputs, and other related
objects which are not directly input or output. The user
can then specify a desired effect in terms of the class of
operation, and the objects of interest. For each operand
an object class may be specified, or a particular
specification component object may be referred to.
Given this description, the retrieval mechanism retrieves
three sets of transformations:

e those which are guaranteed to achieve the

desired effect,

e those which may achieve the desired effect,
but only in restricted circumstances, and

e those which achieve part of the desired effect.

We see this capability as the kernel of a retrieval
system which would help users iteratively revise their
effect descriptions in order to locate the right
transformation. Now that preconditions and effects of
each transformation are made explicit, it will be possible
for ARIES to suggest additional transformations to apply
to correct precondition failures. If a transformation
achieves part of the desired effect, it will be possible to
search the transformation library for transformations
that complete the evolution step. With these capabilities
transformation application will become more of an
interactive planning process, and the ARIES system will
become a more active assistant in the specification
development process.

7. Examples

To convey a flavor of the contents our library of
transformations and how to use it we show some small
examples of semantic relationships, effects and
transformations.

7.1. Manipulations and the semantic relationships

One of the major themes of this paper is that our
transformation library can be organized and accessed via
the effects induced by transformations, and that such
effects can be represented as network manipulation
operations on semantic relationships. For example,
consider one such manipulation operations, splice. As
discussed earlier, splice removes a link between two nodes
A and B, and re-routes the connection through a third
node, C, so that A is linked to C and C is linked to B -
figure 7-1

Splicing changes link: A-->B
to: A-->C-->B

Figure 7-1: Splicing a link

The kind of effect achieved by splicing depends upon
the kind of semantic relationship represented by the link
being spliced. Table 7-1 summarizes the possibilities for
the relationships that we have studied.

7.2. Accessing transformations in the library

To find the transformation(s) that manipulate a
particular kind of semantic relationship, we issue a
retrieval query which expresses the nature of the effect
we are seeking. Such a query must state:

o the network manipulation operation, one of:
insert, remove, update, promote, demote, or
splice,

e the semantic relationship to be manipulated
by the operator, one of: control flow, data
flow, etc., and

e the argument(s) to the operation: either a
reference to an actual piece of specification, or
a generic description - "a statement", "a
type-declaration”, etc.

For example, if we wish to find the transformations that
splice a control-flow substep link between two
statements, we could issue a retrieval query with

operation - splilce
semantic relationship - control-subste
arguments - "a statement", "a statemen

Similarly, if we wish to find the transformations that add
a type declaration to a module, we could issue a retrieval
query with

operation - 1nsert
semantic relationshlp - component
arguments -~ "a module", "a type-declar

Currently we have only a textual-level program
interface for exercising this retrieval capability. It is our
intention to use a graphical display of nodes and links in
conjunction with menus of operations as the more
appropriate user interface.

244

control flow

MEANING OF ALINK "S1 --> S2%:
control flows from statement S1 to S2.
EXAMPLES
splicing in sequential composition:
steps[Si; 82] becomes
effect on control flow links:
S1 —> 82 becomes

steps[Si; S3; s2]
S1 --> 83 ——> Ss2

splicing in substatements:
steps [S1] becomes
effect on control flow links:
steps[S1] --> S1 becomes
steps[if P then Si] --> 1f P then S1 --> S1

steps[if P then S1]

data flow

MEANING OF A LINK “El1 —-> E2":
data flows from expression E1 to E2.
EXAMPLE
splicing in nested expressions:
F(x,?) becomes F(G(x,?),?)
effect on data flow links:

X —=> F(X,?) becomes x --> G(x,?) --> F(G(x),?)

e-r model

MEANING OF ALINK "C1 --> C2":
concept Cl is a specialization of C2.
EXAMPLE
splicing in type hierarchy:
TYPE T1 specialization of T2 becomes
TYPE T1 specialization of T3;
TYPE T3 specialization of T2
effect on specialization-of links:
T1 --> T2 becomes T1 --> T3 —-> T2

modular organization

MEANING OF ALINK "C --> M":
component C belongs to module M.
EXAMPLE
splicing in modular inclusion:
module M1 internal { relation R{) } becomes
module M1 internal
{ module M2 internal { relation R() } }
effect on belongs to links:

R --> M1 becomes R --> M2 --> M1

state description

These links are not "spliceable”.

Table 7-1:

7.3. Splicing transformations in action

Finally, we illustrate the use of a transformation that
splices the data flow link. Suppose that we are focusing
on the following fragment of a specification:

Splicing the different semantic relationships

RELATION P(x,y) IFF y = IP(X,?)

This defines a binary relation P to hold between two
arguments X and y if and only if y equals IP(x,?) i.e.,
some value which in the place of the "?" makes
IP(x,?) true. (The "?" notation is our way to retain a
relational model while getting some of the convenience of
a functional style of expressions. Equivalently, we could
have written

IFF IP(x,y)
which means the same, but has a less explicit data flow.)

We might wish some post-processing to be done on the
value returned by the call on IP. To insert such
processing, we use an evolution transformation to splice
it into the data flow from IP(x,?) to y. In particular,
we may use our SPLICE-AROUND-EXPRESSION
transformation, giving it as inputs:

where to do the splicing:
around the retrieval of the value from IP,i.e., I

what to be spliced in:
POST (v, ?), where the original expression goes in

The result of this transformation is:
RELATION P(x,y) IFF y = POST(IP(x,?),?)

Alternatively, if we wanted to do some pre-computation
on X to reject some inputs, we could use the same
transformation to splice this computation into the data
flow from P’s input argument X to the predicate
y = POST(IP(x,?),?), i.e., we would give the
transformation the inputs:

where to do the splicing:
around the predicate that defines P

what to be spliced in:
PRE(x) and w, where the original predicate goes

The result of this transformation (applied to the original
program fragment, mnot the one into which post-

processing has been introduced) is:
RELATION P(x,y) IFF PRE(x) and y = IP(x,7?)

Suppose that we wished to have both evolutions, i.e.,
pre-processing to reject some X inputs, and post-
processing of the results returned by IP. To achieve this
we wish to perform the two evolution transformations in
series. Knowing the effect of these transformations and
where they apply, namely that they each splice a data
flow link, but the spliced links are different links of the
original program fragment, we can deduce that both
evolution transformations can be serially applied without
conflict, to result in the following:

RELATION P(x,y) IFF PRE(X) and y = POST(IP(

Conversely, had the two transformations been splices of
the same data flow link, we would have recognized a
conflict if both were to be performed. This kind of
reasoning - making use of knowledge of the applications
of evolution transformations, and the effects of those
transformations - is necessary to realize the kind of
specification development suggested in [8].

8. Changing the Transformation Representation

We will now summarize the changes to the
representation of transformations, reflecting our
improved understanding of the their effects. This
changes allow for more consise descriptions of
transformation methods and effects, and provide a

245

stronger foundation for interactive application and

explanation of transformations.

As suggested above, our transformations perform
changes to specifications via syntactic structure
modifications on parse trees. The complexity of the
transformation methods depends upon how easy it is to
derive semantic properties from syntactic structures. The
syntax of Gist is very complex, with a number of
equivalent alternative syntactic constructs and an
idiosyncratic syntactic form. These syntactic features
make transformations overly complex. Accordingly, we
defined a new grammar, with a regular, attribute-value
form, and a minimum number of constructs; this
grammar is used internally by the system. We have
found that the transformations operating upon this

internal form are considerably simpler than their
equivalents operating upon the old parse tree
representations. Furthermore, fewer meaning-preserving
transformations are required, because there are fewer
alternative forms to transform between. Translators are
employed to convert between the old surface syntax for
Gist and the internal grammar. Thus the surface syntax
becomes merely a presentation of the underlying system
description, one of many possible presentations. We plan
to construct translators from the internal representation
to graphical presentations as well. This will enable the
user to directly manipulate the appropriate graphical
network abstraction when describing a desired evolution
step.

Another major change has been to implement
transformation methods directly as sequences of updates
to a semantic networks. In the Specification Assistant,
transformation methods employed the Popart Editor to
make specification changes; this editor would either be
called from Paddle or Lisp. The Popart Editor operates
by walking the parse tree, maintaining a pointer into the
parse tree which determines the current editor focus.
Changes are made to the parse tree by deleting,
replacing, or inserting next to whatever the current focus
is. Such methods are difficult to analyze from the
standpoint of network updates because a) a substantial
portion of a transformation method is devoted to walking
the parse tree instead of making changes; b) determining
the effect of a change requires simulating the parse tree
walk to determine where the editor focus will be; ¢) parse
tree traversal can only follow links between nodes in the
parse tree. The solution of these problems was to make
the parse tree manipulatable as a semantic database. A
package called Popart-DB was developed which allows
one to view parse trees as a database of relations in the
AP5 database system [18]. The structural links of the
parse tree are then represented explicitly as relations
between database objects, and the transformations make
insertions, deletions, and updates of these relations.
Thus the primitive operators in transformations are the
same as the primitive operators used to describe
transformation effects. Furthermore, the abstract
relations between specification component described in

Section 4 can be defined in terms of these base-level
relations. This allows the transformation methods to
traverse these abstract relations. In some cases update
methods are defined for the abstract relations as well, so
that the transformations can update them directly. Thus
the transformation methods and the transformation effect
descriptions are defined in much the same language, as is
commonplace in most Al planning systems, such as
Grapple [14].

The Gist language models the world as collections of
facts, and models behavior in terms of changes to facts in
the world. It thus models the world as a database. The
natural next step was to start using Gist as the language
for writing transformations, or at least the subset of Gist
that is automatically compilable into AP5. At the time
of this writing we have converted about half of our
transformations into Gist. Advantages stem from the
increased uniformity - tools that operate upon Gist (e.g.,
for explanation and analysis) can now be applied to the
transformations themselves. One such tool is the Gist
Paraphraser [29, 20], a facility which generates natural
language descriptions of Gist specifications. Use of the
Paraphaser in describing evolution transformations will
improve understandability of the transformations, with
less reliance on canned documentation. Furthermore, the
same tools which are developed to analyze the behavior
of Gist specifications will be usable to determine the
cumulative effects of transformation methods. This will
allow transformation effect descriptions to be largely
determined automatically, rather than being manually
annotated as is currently done.

Figure 81 shows the new representation of
Parameterize. This example illustrates the above points,

as well as some additional ones listed below.

We have started including with the transformations
examples of their use. A small example specification, and
an example command invocation, are supplied. These aid
in on-line documentation of the transformations; they
also assist in testing and validation of the transformation
library. In addition, hypertext documentation is included
in the representation. Italicized words in the

documentation strings are names of related knowledge
base concepts, which can be browsed by the user.

We explicitly represent the effects of transformations.
For each transformation, we explicitly record its effects in
terms of the network operations listed earlier. We also
identify possible side effects. The operands of these
operations may be inputs to the transformations, outputs
of the transformation, or some other objects retrieved
from the database. Our previous representation made
inputs explicit, but did not make outputs explicit. The
new representation makes both inputs and outputs

3Note that we have made some minor syntactic changes to Gist, tc
make it somewhat closer to REFINE and related languages. We usc
“:" to mean "of type" now, "." for attribute retrieval, and "|* to
mean “such that".

246

Transfor i Par ize

Concept description: "Add a new parameter to & concept-declaration, and
modify references to include references to the added parameter.”
Parameters:
Form: decl : concept-declaration
Display Name: "concept-declaration to be parameterized”
Form: param-name : symbol
Display Name: "Name of the added parameter®
Form: param-type : type-declaration
Display Name: "type of the added parameter®
Form: expression : éxpression-t.roa
default dummy-actual(new-parameter)
Display Name: "The new actual®
Concept Description: "An ezpression to be inserted into references
to the concept-declaration, to compute the new actual”
Notes: "The expression may use the names of existing formal
parameters freely to refer to their corresponding actual values"
Outputs:

Form: added-parameter : parameter
Display Name: "added parameter
Precondition: not exists x:parameter | (parameter-of (decl, x) and
name (x, param-name))
Failure Message: "A parameter named [param-name] already exists"
Concept Description: "A parameter of the same name must not exist"
Method:
steps [add-parameter-to-signature [new-parameter, decll
ylelding added-parameter;
add-actual-computed-wrt-existing-actuals [decl,
expression))
Example Spec:
{type aircraft;
relation controlled(ac : alrcraft);
relation in-flight(ac : aircraft);
invariant foo for-all ac : aireraft |
in-flight(ac) => controlled(ac)}
Example Invocation:
parameterize [declaration-of ('controlled,
‘relation-declaration),
glst-template("c : controller"),
declaration-of (‘controller, ‘type-declaration),
glst-template("ac.assigned-controller”)]

Figure 8-1: New definition of Parameterize

explicit, to facilitate the definition of effects. At the
present time all possible side effects must be explicitly
recorded, to support all relevant retrieval queries.
However, since the semantic relations are formally
derived from syntactic features of the specification, it will
be a straightforward matter to derive possible side effects
from transformations in a similar fashion.

9. Applicable Results and Future Challenges

Formalized evolution transformations are a potential
benefit to all software evolution activities, not just
specification development. The analysis of
transformations in this paper provides a framework for
applying evolution transformations to other languages.
Any language which supports the mechanical derivation
of semantic relations on software objects is a candidate
for formalized evolution. Strongly typed languages such
as Ada and Pascal fit into this category. Unrestricted
Lisp is a poor candidate because it does not rely much on
typing mechanisms, and because dynamic scoping of
variables makes it difficult to trace data flow through a
program.

The main technical prerequisite to our evolution
approach is a knowledge representation framework that
supports retrieval and updates of the relevant program
features in an abstract form. We rely heavily upon our
AP5 and Popart-DB tools; other frameworks such as

247

Refine [23] can provide similar capabilities. Without
suitable abstractions, transformations are difficult to
write and understand, and are unlikely to be versatile
enough to support the construction of a good library.

This paper has described the semantic basis for
developing a reusable library of transformations. Work
on extending the coverage of the library is ongoing. The
main technical challenges that remain have to do with
providing sufficient automated support for the
transformation retrieval and application processes, and
for deriving effects and preconditions of transformations
from their method bodies. Given the work accomplished
so far, we believe that it will be straightforward to
develop a system which retrieves transformations through
iterative reformulation of queries, as in BACKBORD [32],
and which guides the user in applying the transformation
to achieve the desired effect. We envision that the
system ultimately will take a more active role in
interactive planning of specification changes. Failed
preconditions on transformations could then trigger a
search of the transformation library for transformations
that could make the preconditions true. The system
could provide suggestions at each stage as to what
transformations would be appropriate to perform.

10. Acknowledgements

We wish to acknowledge the member of the KBSA
project at ISI for their participation in this research, in
particular Jay Myers, Dan Kogan, Kai Yue, and Kevin
Benner. We also wish to thank Jay Myers and
K. Narayanaswamy, who reviewed earlier drafts of this
paper.

References

1. Allen, B.P., Holtzman, P.L., and Lee, S.D. A
Knowledge-Based Environment for the Development of
Software Parts Composition Systems.

2. Anderson, J.S. & Fickas, S. A Proposed Perspective
Shift: Viewing Specification Design as a Planning
Problem. Proceedings, 5th International Workshop on
Software Specification and Design, Pittsburgh,
Pennsylvania, May, 1989, pp. 177-184.

3. Balzer, R. Automated Enhancement of Knowledge
Representations. Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, AAAT, August
18-23, 1985, pp. 203-207.

4. Blaine, L., Goldberg, A., Pressburger, T., Qian, X.,
Roberts, T., and Westfold, S. Progress on the KBSA
Performance Estimation Assistant. Proceedings of the
2nd KBSA Conference, 1988.

5. Burstall, RM. & Goguen, J. Putting theories
together to make specifications. Proceedings of the Fifth
International Conference on Artificial Intelligence,
August, 1977, pp. 1045-1058.

6. Cohen, D. AP5 Manual.
Institute, 1985. Draft.

USC-Information Sciences

7. Elefante, D. Overview of the Knowledge Based
Specification Assistant. Proceedings of the Computers in
Aerospace VII Conference, Monterey, CA, 1989.

8. Feather, M.S. "Constructing Specifications by
Combining Parallel Elaborations". IEEE Transactions
on So ftware Engineering 15, 2 (February 1989), 198-208.
Available as research report # RS-88-216 from ISI, 4676
Admiralty Way, Marina del Rey, CA 90292.

9. Feather, M.S. Detecting interference when merging
specification evolutions. Accepted for the 5th
International Workshop on Software Specification and
Design, May 1989.

10. Fickas, S. A Knowledge-Based Approach to
Specification Acquisition and Construction. Tech. Rept.
86-1, CS Dept., University of Oregon, Eugene, 1986.

11. Fickas, S. Automating the Specification Process.
Tech. Rept. CIS-TR-87-05, Department of Computer and
Information Science, University of Oregon, 1987.

12. Goldman, N. M. Three Dimensions of Design
Development. Tech. Rept. Information Sciences
Institute/RS-83-2, USC-Information Sciences Institute,
July, 1983.

13. Green, C., D. Luckham, R. Balzer, T. Cheatham,
C. Rich. Report on a Knowledge-Based Software
Assistant. In Rich, C., and Waters, R., Ed., Readings in
Artifictal Intelligence and Software Engineering,
Morgan Kaufmann, Los Altos, CA, 1986.

14. Huff, K.E., and Lesser, V.R. The GRAPPLE Plan
Formalism. Tech. Rept. 87-08, U. Mass. Department of
Computer and Information Science, April, 1987.

15. Johnson, W.L. Deriving specifications from
requirements. Proceedings of the 10th International
Conference on Software Engineering, 1988, pp. 428-437.

16. Johnson, W.L. Specification as Formalizing and
Transforming Domain Knowledge. Proceedings of the
AAAI Workshop on Automating Software Design, 1988.

17. The KBSA Project. Knowledge-Based Specification
Assistant: Final Report.

18. Johnson, W.L., and Yue, K. An Integrated
Specification Development Framework. Tech. Rept.
RS-88-215, USC / Information Sciences Institute, 1988.

19. Lubars, M., and Harandi, M. Addressing Software
Reuse through Knowledge-Based Design. In Biggerstaff,
T.J., and Perlis, A.J., Ed., Software Reusability, Addison
Wesley, 1989.

20. Myers, J.J., and Johnson, W.L. Towards
Specification Explanation: Issues and Lessons.
Proceedings of the 3d Knowledge-Based Software
Assistant Conference, 1988.

21. Johnson, P. Structural Evolution in Exploratory
Software Development. Proceedings of the AAAI Spring
Symposium on Software Engineering, 1989.

22. Prieto-Diaz, R., and Freeman, P. "Classifying

Software for Reusability". IEEE Software 5, 1 (January
1987).

23. Refine User’s Guide.
Alto, CA, 1986.

Reasoning Systems, Palo

24. Reubenstein, H.B. & Waters, R.C. The
Requirements Apprentice: An Initial Scenario.
Proceedings, 5th International Workshop on Software
Specification and Design, Pittsburgh, Pennsylvania, May,
1989, pp. 211-218.

25. Rich, C., Schrobe, H.E. & Waters, R.C. An
overview of the Programmer’s Apprentice. Proceedings,
6th International Joint Conference on Artificial
Intelligence, 1979, pp. 827-828.

268. Robinson, W.N. Integrating Multiple Specificationss
Using Domain Goals. Proceedings, 5th International
Workshop on Software Specification and Design,
Pittsburgh, Pennsylvania, May, 1989, pp. 219-226.

27. Sanders Associates. Knowledge-Based Requirements
Assistant - Interim technical report. Software Systems
Engineering Directorate, March, 1986.

28. Narayanaswamy, K. Static Analysis-Based Program
Evolution Support in the Common Lisp Framework.
Proceedings of the 10th International Software
Engineering Conf., 1988.

29. Swartout, W. GIST English Generator.
Proceedings of the National Conference on Artificial
Intelligence , AAAI, 1982.

30. Waters, R.C. "The programmer’s apprentice: A
session with KBEmacs". IEEE Transactions on

So ftware Engineering SE-11, 11 (November 1985),
1296-1320.

31. Wile, D.S. Program developments: Formal
explanations of implementations. In New Paradigms for
So ftware Development, IEEE Computer Society Press,
1986, pp. 239-248. Also published in CACM 26, (11),
1983, 902-911..

32. Yen, J., Neches, R., and DeBellis, M. Specification
by Reformulation: A Paradigm for Building Integrated
User Support Environments. Proceedings of the Seventh
National Conference on Artificial Intelligence, AAAI,
1988.

